If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^(2)+12X+35=0
a = 1; b = 12; c = +35;
Δ = b2-4ac
Δ = 122-4·1·35
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2}{2*1}=\frac{-14}{2} =-7 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2}{2*1}=\frac{-10}{2} =-5 $
| -13=-3+5u | | -8+2.5b=3.6b-5.8 | | 3(90-x)-1=7(90-x)+1 | | 4p^2+3p-2=50 | | 31=2x-15 | | -2x-6=90+5x | | (2x+4)=(2x+5) | | -2z+11=36,6 | | 39(x+2)+x=4(x-1)+10 | | 5y-6=2y-42 | | 3(x-2)=3x-4 | | 5x+52=3x-16 | | 12,4=6a-2 | | 6x-(2x-9)=-31 | | 61y-15=-137 | | 122=2w+35 | | 8w-18=14 | | 16x-3=269 | | 10x+1=12x+7 | | 10x+-1=12x+7 | | 8+2(x-6)0=-2+2x-2 | | 3v+15=33 | | -24=2(x+5) | | x(3x-12)=96 | | 13x+5=8x-+14 | | x+8=2x+10 | | -4w-5=-41 | | -7(-4-6j)=2+194 | | F(x)=3/x+2 | | 10=p/2-2 | | -3c=-18.9 | | 2(2x-1)=(x+1 |